Practicing Mathematical Induction
 Handout for CSI35

1. Prove by induction that for all $n \in \mathbb{N}$:

$$
2+4+\cdots+2 n=n^{2}+n
$$

Answer. (a) First write proposition we want to prove in a consise form:

$$
\sum_{k=}=
$$

(b) Base Step What does the proposition say for $n=0$?

Verify this statemet:
(c) Inductive Step Now we assume that the proposition is proved for some natural number n and (using this assumption) we will prove it for $n+1$. So we assume that
and we want to prove that:

Now prove it:
2. Prove that for all natural numbers $n \geq 1$ the following identity is true:

$$
(1-x)\left(1+x+x^{2}+\cdots+x^{n}\right)=1-x^{n+1}
$$

Answer. (a) Base Step:
(b) Inductive Step:
3. Prove that for all natural numbers $n \geq 4$ the following inequality holds:

$$
2^{n}<n!
$$

Answer. (a) Base Step We must check the statement for $n=$:
(b) Inductive Step Now we assume that the proposition is proved for some natural number n and (using this assumption) we will prove it for $n+1$. So we assume that
and we want to prove that:

Now prove it:
4. When is $5^{n}<n!$? Make a conjecture and then prove it inductively.

Page 4
5. Prove that for any positive integer $n, 5$ divides $n^{5}-n$

Page 5

