Take home exam for CSI35

Nikos Apostolakis

October 23, 2008

Directions: Please write your answers in separate papers and staple all the papers together. This quiz is due Tuesday October 28, at 2:00 PM.

1. Give a recursive definition of the sequence $\left\{a_{n}\right\}$ if

$$
a_{n}=5 n-6, \quad \text { for } \quad n=0,1,2, \ldots
$$

2. This question is about the Tower of Hanoi puzzle. The puzzle consists of three pegs and six disks, initially stacked in decreasing size on one of the pegs, say A, as shown below:

The goal is to transfer the whole tower of six disks to one of the other pegs, say C, moving only one disk at a time and never moving a larger one on top of a smaller.
(a) Find a solution to the puzzle.
(b) Prove that this puzzle has a solution for any number of initial disks.
(c) Prove that the puzzle with n disks can be solved in $2^{n}-1$ moves.
(d) Prove that the puzzle with n disks cannot be solved in fewer than $2^{n}-1$ moves.
3. If w is a string then its reverse w^{R} is the string obtained by reading w backwards, for example the reverse of the string $s u b$ is the string bus.
(a) Give an inductive definition of the reverse of a string.
(b) Use structural induction to prove that for all strings w_{1} and w_{2} the following holds:

$$
\left(w_{1} w_{2}\right)^{R}=w_{2}^{R} w_{1}^{R}
$$

4. Consider the relations R, and S on the set $\{1,2,3,4\}$ represented by the digraphs:

(a) Find the matrices M_{S} and M_{R}.
(b) Use these matrices to compute the compositions $R \circ S$ and $S \circ R$.
(c) Draw the digraphs that represent $R \circ S$ and $S \circ R$.
5. Consider the relation R represented by the matrix

$$
M_{R}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

(a) Is R reflexive?
(b) Is R symmetric?
(c) Is R transitive?
(d) Draw the digraph representing R.
6. Which of the following relations defined on the set of all people are equivalence relations. Justify your answers:
(a) $(a, b) \in R$ iff a has the same parents as b.
(b) $(a, b) \in R$ iff a is parent of b.
(c) $(a, b) \in R$ iff a lives in the same town as b.
(d) $(a, b) \in R$ iff a lives one floor above b.
(e) $(a, b) \in R$ iff a is an acquaintance of b.
7. Consider the relation R defined on the set of all positive real numbers as follows:

$$
(a, b) \in R \quad \text { iff } \quad \frac{a}{b} \in \mathbb{Q}
$$

where \mathbb{Q} stands for the set of rational numbers. Prove that R is an equivalence relation.
8. (Extra Credit) List all equivalence relations on the set $A=\{1,2,3,4\}$.

