Quiz 2
 Math 31-6429

You should fully justify your answers. Do all your work on separate paper, and make sure to print your name in the first sheet and staple all the sheets together. Unstapled, loose pieces of paper will not be graded. This quiz is due on Thursday, September 20, at 6:00pm.

1. Explain in detail why the function

$$
f(x)=\frac{(2+x)^{3}-7}{1+x^{2}}-\sqrt{x^{2}+3}-\sin (\cos (3 x))
$$

is continuous at all points of its domain.
2. Find the points that each of the following functions is discontinuous and identify the nature of the discontinuity:
(a) $f(x)= \begin{cases}\frac{|x|}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
(b) $g(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 3 & \text { if } x=0\end{cases}$
(c) $g(x)= \begin{cases}\frac{3}{(x-5)^{2}} & \text { if } x \neq 5 \\ 5 & \text { if } x=5\end{cases}$
3. Find the real number a so that the function defined by

$$
f(x)= \begin{cases}2 x-a & \text { if }-\infty \leq x \leq \pi \\ \sin x & \text { if } \pi<x<\infty\end{cases}
$$

is continuous on \mathbb{R}.
4. Give an example of a function that
(a) has a jump discontinuity at $x=-5$.
(b) has a removable singularity at $\mathrm{x}=0$.
(c) has an infinite discontinuity at $\mathrm{x}=3$.
(d) is continuous everywhere except at $x=0$ and the discontinuity is not jump, removable or infinite.
5. Prove that the equation $2^{x}=x^{2}$ has a solution in the interval $[-1,0] .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ This equation has also two obvious positive solutions can you find them?

