Quiz 1
 Math 31-6429

You should fully justify your answers. Do all your work on separate paper, and make sure to print your name in the first sheet and staple all the sheets together. Unstapled, loose pieces of paper will not be graded. This quiz is due on Tuesday, September 11, at 6:00pm.

1. Compute the following limits. If you think that a certain limit doesn't exist, state so and explain why.
(a) $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x^{2}+x-6}$.
(b) $\lim _{x \rightarrow-4} \frac{|x+4|}{x+4}$.
(c) $\lim _{h \rightarrow 0} \frac{(3+h)^{2}-9}{h}$.
(d) $\lim _{t \rightarrow 4} \frac{\sqrt{t}-2}{\sqrt{t-4}}$.

Hint. You might want to rationalize the numerator. Think of conjugate expressions.
(e) $\lim _{x \rightarrow 0} \cos \frac{1}{x}$.
(f) $\lim _{x \rightarrow \pi / 2^{-}} \tan x$.
(g) $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{5}}$.
(h) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$.
2. Let

$$
f(x)= \begin{cases}a x^{2}-3 x+4 & \text { if } x \leq 2 \\ x+3 a & \text { if } x>2\end{cases}
$$

Find the real number a so that $\lim _{x \rightarrow 2} f(x)$ exists.
3. By examining the graphs calculate the required limits. If you think that a certain limit doesn't exist state so.
a)

$\lim _{x \rightarrow 0^{+}} f(x)=$
$\lim _{x \rightarrow 0} f(x)=$
$\lim _{x \rightarrow 0^{-}} f(x)=$
b)

c)

$\lim _{x \rightarrow 0^{+}} f(x)=$
$\lim _{x \rightarrow 0} f(x)=$
$\lim _{x \rightarrow 0^{-}} f(x)=$
c)

$\lim _{x \rightarrow 2^{+}} f(x)=$ $\lim _{x \rightarrow 2} f(x)=$ $\lim _{x \rightarrow 2^{-}} f(x)=$

