The answers to the second quiz

1. Find all assymptotes for each of the following rational functions:
(a) $f(x)=\frac{2 x^{2}-5}{x^{2}+2 x-8}$

Answer. The denominator is

$$
x^{2}+2 x-8=(x+4)(x-2)
$$

so the domain of this function is $(-\infty,-4) \cup(-4,2) \cup(2, \infty)$. None of the roots of the denominator are roots of the numerator so they both determine vertical asymptotes. Thus we have two vertical asymptotes:

$$
x=-4, \quad \text { and } \quad x=2
$$

Also since the numerator and denominator have the same degree we have a horizontal asymptote:

$$
y=2
$$

(b) $g(x)=\frac{2 x^{2}-3 x+5}{x+1}$

Answer. The denominator vanishes at $x=-1$ and this is not a root of the numerator. Thus we have a vertical asymptote:

$$
x=-1
$$

Also since the degree of the numerator is one more than the degree of the denominator we have a slant asymptote determined by the quotient of the division. So the slant asymptote is

$$
y=2 x-5
$$

2. Use the properties of logarithms to expand the following expression as much as possible:

$$
\ln \sqrt[3]{\frac{x^{2} y}{z^{5}}}
$$

Answer.

$$
\begin{aligned}
\ln \sqrt[3]{\frac{x^{2} y}{z^{5}}} & =\ln \left(\frac{x^{2} y}{z^{5}}\right)^{1 / 3} \\
& =\frac{1}{3} \ln \left(\frac{x^{2} y}{z^{5}}\right) \\
& =\frac{1}{3}\left(\ln x^{2} y-\ln z^{5}\right) \\
& =\frac{1}{3}\left(\ln x^{2}+\ln y-\ln z^{5}\right) \\
& =\frac{1}{3}(2 \ln x+\ln y-5 \ln z) \\
& =\frac{2 \ln x}{3}+\frac{\ln y}{3}-\frac{5 \ln z}{3}
\end{aligned}
$$

3. Solve the following equation:

$$
\log _{2}(x-4)+\log _{2}(x+2)=\log _{2} 7
$$

Answer. We have

$$
\begin{aligned}
\log _{2}(x-4)+\log _{2}(x+2)=\log _{2} 7 & \Longleftrightarrow \log _{2}(x-4)(x+2)=\log _{2} 7 \\
& \Longleftrightarrow \log _{2}\left(x^{2}-2 x-8\right)=\log _{2} 7 \\
& \Longleftrightarrow x^{2}-2 x-8=7 \\
& \Longleftrightarrow x^{2}-2 x-15=0 \\
& \Longleftrightarrow(x+3)(x-5)=0 \\
& \Longleftrightarrow x=-3 \quad \text { or } \quad x=5
\end{aligned}
$$

When we plug $x=-3$ in to the original equation we see that it doesn't work since we get $\log _{2}-7$ wchich is undefined. $x=2$ does work. So the only solution is

$$
x=5
$$

4. Solve the following equation:

$$
10^{2 x}-11 \cdot 10^{x}+10=0
$$

Answer. Let $u=10^{x}$. Then $10^{2 x}=u^{2}$ and the original equation becomes:

$$
u^{2}-11 u+10=0
$$

Solving this equation we get

$$
u=1 \quad \text { or } \quad u=10
$$

So we have

$$
10^{x}=1 \quad \text { or } \quad 10^{x}=10
$$

or equivalently

$$
x=0 \quad \text { or } \quad x=1
$$

