
Answers to the first exam for Math 30.

1. Graph the following function. Possible x or y intercepts should be identified exactly.

2. Find the domain, the range, and the inverse function of the following function:

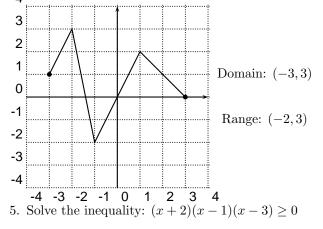
$$f(x) = \frac{2}{x+3}$$

Your answers should be in interval notation.

Answer. Domain is $(-\infty, -3) \cup (-3, \infty)$, Range is $(-\infty, 0) \cup (0, \infty)$. The inverse function is

$$f^{-1}(x) = \frac{2}{x} - 3$$

3. Verify that the following two functions are inverses of each other: $f(x) = \frac{2x-5}{x+3}$ and $g(x) = \frac{3x+5}{2-x}$.


Answer. There are two ways to verify that these two functions are inverses to each other.

• You can either compute the inverse functions and verify that the g is indeed the inverse of f and f is the inverse of g.

• Or, you can simply verify that,

$$(f \circ g)(x) = x$$
 and $(g \circ f)(x) = x$

 $4_{\pmb{4}}$ Find the domain and the range of the function h whose graph is shown:

Answer. The solution set is $[-2,1] \cup [3,\infty)$.

6. Let $f(x) = \sqrt{3x - 6}$ and g(x) = 2x + 1. Find the domain and the formula for the function $\frac{f}{a}$.

Answer. The formula for $\frac{f}{g}$ is

$$\frac{f}{g}(x) = \frac{\sqrt{3x-6}}{2x+1}$$

A real number x is in the domain of $\frac{f}{g}$ if *both* of the following conditions are satisfied

1. $3x - 6 \ge 0$ or equivalently $x \ge 2$ 2. $2x + 1 \ne 0$ or equivalently $x \ne -\frac{1}{2}$

Both of these conditions are satisfied in the interval $[2, \infty)$.

7. Suppose a ball is thrown directly upward from an initial height of 200 feet with an initial velocity of 96 feet per second. Then the height of the ball (in feet) after t seconds is given by the equation:

$$h(t) = -16t^2 + 96t + 200$$

When will the ball reach its maximum height?

Answer. The graph of h is a parabola with vertex (3, 344). Therefore the ball will reach maximum height after 3 seconds.

8. The graph of the function g is obtained by shifting the graph of the function $f(x) = 2x^3$ three units to the right along the x-axis and four units downwards along the y-axis. Find a formula for g(x). (You don't need to graph g).

Answer. $g(x) = 2(x-3)^3 - 4$