Answers to the first exam for Math 30.

1. Graph the following function. Possible x or y intercepts should be identified exactly.

$$
f(x)= \begin{cases}x^{2}+2 x-3 & \text { if } x \leq 1 \\ 2 x-1 & \text { if } x>1\end{cases}
$$

2. Find the domain, the range, and the inverse function of the following function:

$$
f(x)=\frac{2}{x+3}
$$

Your answers should be in interval notation.
Answer. Domain is $(-\infty,-3) \cup(-3, \infty)$, Range is $(-\infty, 0) \cup(0, \infty)$. The inverse function is

$$
f^{-1}(x)=\frac{2}{x}-3
$$

3. Verify that the following two functions are inverses of each other: $f(x)=\frac{2 x-5}{x+3}$ and $g(x)=\frac{3 x+5}{2-x}$.

Answer. There are two ways to verify that these two functions are inverses to each other.

- You can either compute the inverse functions and verify that the g is indeed the inverse of f and f is the inverse of g.
- Or, you can simply verify that,

$$
(f \circ g)(x)=x \text { and }(g \circ f)(x)=x
$$

${ }_{4}$ Find the domain and the range of the function h whose graph is shown:

Domain: $(-3,3)$

Range: $(-2,3)$
5. Solve the inequality: $(x+2)(x-1)(x-3) \geq 0$

Answer. The solution set is $[-2,1] \cup[3, \infty)$.
6. Let $f(x)=\sqrt{3 x-6}$ and $g(x)=2 x+1$. Find the domain and the formula for the function $\frac{f}{g}$.

Answer. The formula for $\frac{f}{g}$ is

$$
\frac{f}{g}(x)=\frac{\sqrt{3 x-6}}{2 x+1}
$$

A real number x is in the domain of $\frac{f}{g}$ if both of the following conditions are satisfied

1. $3 x-6 \geq 0$ or equivalently $x \geq 2$
2. $2 x+1 \neq 0$ or equivalently $x \neq-\frac{1}{2}$

Both of these conditions are satisfied in the interval $[2, \infty)$.
7. Suppose a ball is thrown directly upward from an initial height of 200 feet with an initial velocity of 96 feet per second. Then the height of the ball (in feet) after t seconds is given by the equation:

$$
h(t)=-16 t^{2}+96 t+200
$$

When will the ball reach its maximum height?
Answer. The graph of h is a parabola with vertex $(3,344)$. Therefore the ball will reach maximum height after 3 seconds.
8. The graph of the function g is obtained by shifting the graph of the function $f(x)=2 x^{3}$ three units to the right along the x-axis and four units downwards along the y-axis. Find a formula for $g(x)$. (You don't need to graph g).

Answer. $g(x)=2(x-3)^{3}-4$

