Fourth Quiz for CSI35

Nikos Apostolakis

Directions: This quiz is due Thursday November 16, at 6:00 PM. Please make sure to justify all your answers. No credit will be given for unjustified answers.

1. Let $A=\{1,2,3,4\}$. Draw the Hasse diagram for the poset $(\mathcal{P}(A), \subseteq)$, where $\mathcal{P}(A)$ stands for the power set of A.
2. Consider the partial order represented by the following Hasse diagram:

(a) Find the maximal elements.
(b) Find the minimal elements.
(c) Is there a largest element?
(d) Is there a least element?
(e) Find all upper bounds of $\{a, b, c\}$.
(f) Find the least upper bound of $\{a, b, c\}$, if it exists.
(g) Find all lower bounds of $\{j, k, g\}$.
(h) Find the greatest lower bound of $\{j, k, g\}$, if it exists.
3. Let (P, \preceq) be a poset that has only one minimal element m. Is m necessarily minimal? If your answer is affirmative then you should prove it, if it is negative then you should provide a counterexample.
4. A graph G has six vertices with the following degrees: $5,3,3,2,4,1$.
(a) How many edges does G have?
(b) Draw two non isomorphic such graphs.
5. Is the graph that you drew in Question 1 bipartite? How about the one in Question 2?
6. Prove that the cycle C_{n} is bipartite if and only if n is even.
7. A graph G has the following incidence matrix

$$
\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Find an adjacency matrix for G.
8. Prove that the graphs G_{1} and G_{2} are isomorphic.

