Fourth Quiz for CSI35 Nikos Apostolakis

Directions: This quiz is due Thursday November 16, at 6:00 PM. Please make sure to *justify* all your answers. No credit will be given for unjustified answers.

- 1. Let $A = \{1, 2, 3, 4\}$. Draw the Hasse diagram for the poset $(\mathcal{P}(A), \subseteq)$, where $\mathcal{P}(A)$ stands for the power set of A.
- 2. Consider the partial order represented by the following Hasse diagram:

- (a) Find the maximal elements.
- (b) Find the minimal elements.
- (c) Is there a largest element?
- (d) Is there a least element?
- (e) Find all upper bounds of $\{a, b, c\}$.
- (f) Find the least upper bound of $\{a, b, c\}$, if it exists.
- (g) Find all lower bounds of $\{j, k, g\}$.
- (h) Find the greatest lower bound of $\{j, k, g\}$, if it exists.
- 3. Let (P, \preceq) be a poset that has only one minimal element m. Is m necessarily minimal? If your answer is affirmative then you should prove it, if it is negative then you should provide a counterexample.
- 4. A graph G has six vertices with the following degrees: 5, 3, 3, 2, 4, 1.
 - (a) How many edges does G have?
 - (b) Draw two non isomorphic such graphs.
- 5. Is the graph that you drew in Question 1 bipartite? How about the one in Question 2?
- 6. Prove that the cycle C_n is bipartite if and only if n is even.

7. A graph G has the following *incidence* matrix

/1	1	0	0	$0 \rangle$
1	0	1	0	1
0	0	0	1	1
$\sqrt{0}$	1	1	1	0/

Find an *adjacency* matrix for G.

8. Prove that the graphs G_1 and G_2 are isomorphic.

