Third Quiz for CSI35 Nikos Apostolakis

Directions: This quiz is due Thursday October 26, at 6:00 PM.

1. Consider the relations R, and S on the set $\{1, 2, 3, 4\}$ represented by the digraphs:

- (a) Find the matrices M_S and M_R .
- (b) Use these matrices to compute the compositions $R \circ S$ and $S \circ R$.
- (c) Draw the digraphs that represent $R \circ S$ and $S \circ R$.
- 2. Let R be the relation represented by the following matrix

$$M_R = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Is R reflexive?
- (b) Is R symmetric?
- (c) Is R antisymmetric?
- (d) Is R transitive?
- 3. Which of the following relations defined on the set of all people are equivalence relations. Justify your answers:
 - (a) $(a,b) \in R$ iff a has the same parents as b.
 - (b) $(a,b) \in R$ iff a is parent of b.
 - (c) $(a, b) \in R$ iff a lives in the same town as b.
 - (d) $(a,b) \in R$ iff a lives one floor above b.
 - (e) $(a,b) \in R$ iff a is an acquaintance of b.
- 4. Consider the relation defined on the set of ordered pairs of natural numbers (i.e. on the set $\mathbb{N} \times \mathbb{N}$) as follows:

 $((m,n),(k,l)) \in R$ iff m+l = k+n

- (a) Prove that R is an equivalence relation.
- (b) Find the equivalence class of (5, 6).