Third Quiz for CSI35

Nikos Apostolakis

Directions: This quiz is due Thursday October 26, at 6:00 PM.

1. Consider the relations R, and S on the set $\{1,2,3,4\}$ represented by the digraphs:

S
(a) Find the matrices M_{S} and M_{R}.
(b) Use these matrices to compute the compositions $R \circ S$ and $S \circ R$.
(c) Draw the digraphs that represent $R \circ S$ and $S \circ R$.
2. Let R be the relation represented by the following matrix

$$
M_{R}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Is R reflexive?
(b) Is R symmetric?
(c) Is R antisymmetric?
(d) Is R transitive?
3. Which of the following relations defined on the set of all people are equivalence relations. Justify your answers:
(a) $(a, b) \in R$ iff a has the same parents as b.
(b) $(a, b) \in R$ iff a is parent of b.
(c) $(a, b) \in R$ iff a lives in the same town as b.
(d) $(a, b) \in R$ iff a lives one floor above b.
(e) $(a, b) \in R$ iff a is an acquaintance of b.
4. Consider the relation defined on the set of ordered pairs of natural numbers (i.e. on the set $\mathbb{N} \times \mathbb{N}$) as follows:

$$
((m, n),(k, l)) \in R \quad \text { iff } \quad m+l=k+n
$$

(a) Prove that R is an equivalence relation.
(b) Find the equivalence class of $(5,6)$.

