First Quiz for CSI35

Nikos Apostolakis

September 30, 2006

Directions: This quiz is due Thursday October 5, at 6:00 PM.

1. Alice and Bob play a game by taking turns removing 1,2 or 3 stones from a pile that initially has n stones. The person that removes the last stone wins the game. Alice plays always first.
(a) Prove by induction that if n is a multiple of 4 then Bob has a wining strategy.
(b) Prove that if n is not a multiple of 4 then Alice has a wining strategy.
2. Recall that a bit string is a word on the alphabet $\{0,1\}$. Let O be the function that counts the number of zeros in s.
(a) Give a recursive definition of $O(s)$.
(b) Use structural induction to prove that for two string bits s and t we have:

$$
O(s t)=O(s)+O(t)
$$

where, st stands for the concatenation of the two strings s and t.
3. For a rooted tree T let $v(T)$ and $e(T)$ denote the number of vertices and the number of edges of T respectively. Use structural induction to prove that for all rooted trees T,

$$
v(T)-e(T)=1
$$

4. Recall the definition of the Fibonacci numbers $\left\{f_{n}\right\}$:

$$
f_{n}= \begin{cases}0 & \text { if } \mathrm{n}=0 \\ 1 & \text { if } \mathrm{n}=1 \\ f_{n-1}+f_{n-2} & \text { otherwise }\end{cases}
$$

Prove that for all positive integers n we have:

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

