Midterm exam for CSI35

Nikos Apostolakis

October 27, 2006

Directions: This quiz is due Thursday November 2, at 6:00 PM.

1. What is the halting problem? What does Turing's theorem state exactly?
2. Prove that if n is an odd integer then $n^{4} \equiv 1 \bmod 4$.
3. Provide a simple formula that generates the terms of the sequence that begins with $15,8,1,-6, \ldots$
4. Give a recursive definition of the sequence $\left\{a_{n}\right\}$ if

$$
a_{n}=5 n-6, \quad \text { for } \quad n=0,1,2, \ldots
$$

5. Prove by mathematical induction that for any natural number n we have:

$$
2+4+8+\cdots+2 n=n(n+1)
$$

6. Prove using mathematical induction that a set with n elements has 2^{n} subsets.
7. Let f_{n} denote the n-th Fibonacci number where n is a natural number. Show that

$$
f_{n-1} f_{n+1}-f_{n}^{2}=(-1)^{n}
$$

8. Recall that a bit string is a word in the alphabet $\{0,1\}$.
(a) Give a recursive definition of the set of bit strings.
(b) Let I be the function that counts the number of ones in a bit string. Give a recursive definition of I.
(c) Use structural induction to prove that

$$
I(s t)=I(s)+I(t)
$$

9. Consider the relation R represented by the matrix

$$
M_{R}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)
$$

(a) Is R reflexive?
(b) Is R symmetric?
(c) Is R transitive?
(d) Draw the digraph representing R.
10. Give the definition of an equivalence relation.
11. Is the following relation

$$
R=\left\{(a, b) \mid a^{2}=b^{2}\right\}
$$

an equivalence relation? If yes what is the equivalence class of 5 ?
12. Consider the relation R defined on the set of all positive real numbers as follows:

$$
(a, b) \in R \quad \text { iff } \quad \frac{a}{b} \in \mathbb{Q}
$$

where \mathbb{Q} stands for the set of rational numbers. Prove that R is an equivalence relation.
13. Let R be the equivalence relation generated by the following partition of $\{1,2,3,4,5,6\}$:

$$
\{\{1,2\},\{3\},\{4,5,6\}\}
$$

(a) Find the equivalence classes of R.
(b) Draw the digraph representing R.
14. (Extra Credit) List all equivalence relations on the set $A=\{1,2,3,4\}$.

