Second Review for Math 13 Fall 2005

Nikos Apostolakis

Please note: You should fully justify your answers.

1. Match each graph with a function:

(a) $f(x)=e^{x}$,
(b) $f(x)=e^{-x}$
(c) $f(x)=4^{x}$
(d) $f(x)=2^{x}$
(e) $f(x)=4^{-x}$
(f) $f(x)=\left(\frac{1}{2}\right)^{x}$
2. Graph each of the following functions:
(a) $f(x)=\ln x$
(b) $f(x)=3 \log _{2} x$.
3. What is the domain of the following function:

$$
f(x)=\ln (\ln x)
$$

4. Express as a sum difference or multiple of logarithms:

$$
\ln \left(\frac{x \sqrt[7]{y}}{z^{2} w^{3}}\right)
$$

5. Write the following expression as a single logarithm:

$$
4 \log _{4} x-\frac{2}{3} \log _{4} 2 y+3 \log _{4} x+2
$$

6. Solve the following equations:
(a) $\pi^{2 x+3}=17$
(b) $\frac{1}{2} \log _{3}(x+3)=2$
(c) $\log (x-3)+\log x=2$
(d) $2^{x}-6\left(2^{-x}\right)=1$
(e) $3^{x-2}=2^{x+1}$
(f) $2 \log _{x} 2+\log _{2} x=3$.
7. Find an equation of the following sinusoidal curve:

8. Sketch the graph of the following function:

$$
f(x)=-4 \cos \left(x-\frac{\pi}{4}\right)
$$

9. Find the function (and graph it) of the form $y=2 \cos (2 x-c)$ that passes through the point $(\pi / 6,2)$ for the smallest possible positive value of c.
10. A particle moves on a circle of radius 6 with constant angular velocity $\omega=4.00 \mathrm{rad} / \mathrm{s}$ and at time $t=0$ its initial angle is $\pi / 4 \mathrm{rad}$. Write the equation that describes the displacement of the projection of the particle on the y-axis.
11. Sketch the graph of each of the following functions:
(a) $y=\sec x$
(b) $y=\csc x$
(c) $y=\tan x$
(d) $y=\cot x$.
12. Prove the following identities:
(a) $\csc \theta \sec \theta-\tan \theta=\cot \theta$
(b) $\frac{1+\sin x}{\cos x}=\frac{\cos x}{1-\sin x}$
(c) $\frac{\cos ^{2} x+2 \sin x-1}{\cos ^{2} x+3 \sin x-3}=\frac{1}{1-\csc x}$
(d) $\cos (x+y) \cos (x-y)=\cos ^{2} x-\sin ^{2} y$
