
Second Review for Math 13 Fall 2005

Nikos Apostolakis

Please note: You should fully justify your answers.

1. Match each graph with a function:

- (a) $f(x) = e^x$,
- (b) $f(x) = e^{-x}$
- (c) $f(x) = 4^x$
- (d) $f(x) = 2^x$
- (e) $f(x) = 4^{-x}$

(f)
$$f(x) = \left(\frac{1}{2}\right)^x$$

2. Graph each of the following functions:

(a)
$$f(x) = \ln x$$

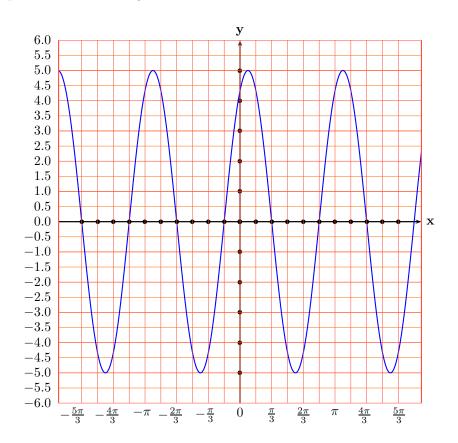
(b) $f(x) = 3 \log_2 x$.

3. What is the domain of the following function:

$$f(x) = \ln(\ln x) \,.$$

4. Express as a sum difference or multiple of logarithms:

$$\ln\left(\frac{x\sqrt[7]{y}}{z^2w^3}\right) \,.$$


5. Write the following expression as a single logarithm:

$$4\log_4 x - \frac{2}{3}\log_4 2y + 3\log_4 x + 2.$$

6. Solve the following equations:

(a)
$$\pi^{2x+3} = 17$$

(b) $\frac{1}{2}\log_3(x+3) = 2$
(c) $\log(x-3) + \log x = 2$
(d) $2^x - 6(2^{-x}) = 1$
(e) $3^{x-2} = 2^{x+1}$
(f) $2\log_x 2 + \log_2 x = 3$.

7. Find an equation of the following *sinusoidal* curve:

8. Sketch the graph of the following function:

$$f(x) = -4\cos(x - \frac{\pi}{4})$$

- 9. Find the function (and graph it) of the form $y = 2\cos(2x c)$ that passes through the point $(\pi/6, 2)$ for the smallest possible positive value of c.
- 10. A particle moves on a circle of radius 6 with constant angular velocity $\omega = 4.00 \text{ rad/s}$ and at time t = 0 its initial angle is $\pi/4$ rad. Write the equation that describes the displacement of the projection of the particle on the y-axis.
- 11. Sketch the graph of each of the following functions:

(a)
$$y = \sec x$$

- (b) $y = \csc x$
- (c) $y = \tan x$
- (d) $y = \cot x$.

12. Prove the following identities:

(a) $\csc\theta \sec\theta - \tan\theta = \cot\theta$ $1 \perp \sin r$ $\cos r$

(b)
$$\frac{1+\sin x}{\cos x} = \frac{\cos x}{1-\sin x}$$

(c) $\frac{\cos^2 x + 2\sin x - 1}{\cos^2 x + 2\sin x} = \frac{1}{1-\cos^2 x}$

(c)
$$\frac{\cos^2 x + 2\sin x - 1}{\cos^2 x + 3\sin x - 3} = \frac{1}{1 - \csc x}$$

(d) $\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y$