
Indexing Arbitrary Data with SWISH-E

Josh Rabinowitz • joshr@joshr.com • SkateboardDirectory.com
From The Proceedings Of The 2004 USENIX Technical Conference

Abstract
Fast lookups are crucial to many computer applications and operations. The general problem of indexing and
searching on arbitrary data is not a simple one, with many semantic, linguistic, and technical issues to iron out. In
this paper we present swish-e, a descendent of Kevin Hughes’ SWISH project from 1994. Swish-e provides a full-
featured and useful toolkit to index and query 8-bit ASCII data. This paper discusses the structure, features, and
usage of swish-e, with mentions of possible directions for further development and interesting related work. We also
compare swish-e to MySQL’s full-text search feature in terms of features and speed, and discuss two real-world
swish-e applications, Sman and Swished.

1. Introduction
This paper discusses the features and limitations of
swish-e[1], and to a lesser extent, MySQL’s fulltext
search feature[2]. This paper loosely builds on
information presented in the Author’s article in Linux
Journal entitled “How To Index Anything”[3]. We at
SkateboardDirectory.com discovered swish-e when
researching indexing toolkits and were attracted by its
feature set, perl interface, quality documentation, and
lively and informative discussion list.

2 SWISH-E Overview

The three most common data storage techniques (flat
files, Berkeley DB[4]-like binary files, and SQL
databases) each give rise to their own particular data
search and retrieval features, strengths and weaknesses.
While each technique allows some form of easy and/or
fast lookups, none is inherently optimized for searching
collections of human language text.

Designed not for storage but for quick retrieval of data
from prebuilt indices, swish-e fills that need. Swish-e
provides a native C interface and command line tools to
build and query indices, and a perl interface for
searching as well. Indices consist of a pair of binary
files and are built using the swish-e binary and one of
swish-e’s three indexing methods. We have been using
swish-e at SkateboardDirectory.com since 2002.

2.1 Building SWISH-E

Currently, installing swish-e on a unix-like system
means building from source. You can find tarballs for
the source code on the swish-e website, and swish-e is
built through a typical install process using a
./configure script. The Perl SWISH::API can be
found in the /perl subdirectory and is likewise installed
through the typical perl ‘perl Makefile.PL;

make; make test; sudo make install’ process.

2.2 Configuration Files

Swish-e will typically depend on a single configuration
file while creating a index. These files follow a familiar
line-oriented name/value syntax. Blank lines and lines
beginning with a # are ignored, remaining lines are
expected to be single, named directives. For example,
this is a valid swish-e configuration file:

example1.conf
IndexFile example1.index
DefaultContents HTML2

2.3 SWISH-E Parsers

Swish-e directly supports indexing of text, html, and
XML files, converting HTML or XML entities where
appropriate, and the ability to index data based on the
tags it resides within. The XML2, HTML2, and TXT2
parsing engines, which require the libxml2 libraries, are
preferable to the original counterparts (called XML1,
HTML1 and TXT1), especially when handling HTML.

2.4 Properties and MetaNames

MetaNames are the fields in a swish-e index that are
searched on. Properties are the fields returned from a
swish-e search describing the particular documents. By
default, text is indexed under the MetaName
swishdefault , and Properties returned indicate
information about each relevant document.

Several so-called Auto Properties are always present in
search results returned from the swish-e APIs. The table
below summarizes some of the most important ones.

Table 1: some of swish-e’s Auto Properties

swishrank Normalized integer between 1 and
1000 representing relevance of hit
to query

swishtitle Title of the document. Either the
filename, or (by default) if parsed
from HTML, the text between
<title> tags

swishdocpath URL or filepath of indexed
document

swishdocsize Length of indexed document, in
bytes

2.4.1 String Properties

Any non-numeric properties are internally stored as
strings. By default, any properties longer than 100
characters are compressed using zlib before storage,
which helps keep the index sizes down. Note that each
string is compressed on its own, so redundancy between
properties is not exploited in the compression process.

2.4.2 Numeric Properties

Using the PropertyNamesNumeric directive, swish-e
has the ability to store properties as unsigned integers,
which allows for proper sorting numerically at search
time. Unfortunately, the swish-e engine is not
particularly efficient in its methods of sorting by
numeric properties: currently the whole result list is
simply sorted by integer after the index is searched and
before the results are returned to the client.

2.5 Indexing Methods

Here we discuss three different ways to index data with
swish-e. The first is to index files using one of the built-
in parsers alone, as shown in the next section. The other
two methods, FileFilters and external programs, allow
for conversion of data from other sources or file
formats.

2.5.1 Indexing Files Directly

Assume that our working directory contains the above
example1.conf file and a set of HTML files we want
to index in ./html, we can build the index
example1.index using swish-e’s -f and -i options
to specify the configuration file to use and which
directory to index:

swish-e –f example1.conf –i ./html

2.5.2 Using FileFilters

For data in formats other than HTML, XML or TXT,
you need to arrange to have the files converted to one
of the formats that swish-e directly supports.

The most straightforward way to convert files for
swish-e is via the FileFilter method. This is
engaged by including lines like the following in your
configuration file:

example2.conf
FileFilter .pdf pdftotext "’%p’ -"
IndexContents TXT .pdf

This specifies that files ending with .pdf are to be
converted using the pdftotext executable (part of the
xpdf package[5]), and then indexed using swish-e’s
TXT parser. This configuration file would be used
similarly to the one shown in the previous example.

The downside to the FileFilter method is that swish-e
invokes a child process for each document to be
converted. This can present a performance issue during
index time. On the other hand, assuming a program
exists to perform the translation required, it can be easy
to support additional file types by adding a pair of lines
like the ones above to your configuration file.

2.5.3 Using External Programs

The most flexible mechanism for getting your data into
a swish-e index is through External Programs.
Essentially, external programs convert documents to a
supported format as needed, wrap the result with
appropriate swish-e headers, and pass that to swish-e.
Again, swish-e will only interpret data as TXT, HTML,
or XML, so if you have special needs, target your
external program’s output for a specific one of the
parsers.

Here’s an example external program that takes all the
XML files in the apache 2.0 docs/manual tree, which
we’ve copied to ./manual, and prepares them for
indexing with swish-e.

#!/usr/bin/perl -w
example3-prog.pl
appends data to Path-Name: header

my @files =
`find ./manual -name '*.xml' -print`;

chomp(@files);
my $cnt = 1;
for my $f (@files) {
 open(FILE, "< " . $f);
 my $xml = join("", <FILE>);
 close(FILE);
 my $size = length $xml;
 # note: Fails if UTF
 print "Path-Name: $f $cnt\n",
 "Document-Type: XML*\n",
 "Content-Length: $size\n\n",
 $xml;
 $cnt++;
}

We didn’t have to use an external program to index the
XML files, but doing so allows us to easily introduce
how to use some of swish-e’s special XML handling
features, and to show how to easily add MetaNames
and Properties using swish-e’s ExtractPath and
ReplacePath directives.

2.6 XML, HTML, MetaNames and
Properties

Swish-e lets you easily index any text within an HTML
or XML tag as a MetaName and/or Property through
use of the MetaNames and PropertyNames directives.

The following configuration file shows use of these
directives, along with the ExtractPath and
ReplacePath directives described below:

example3.conf
MetaNames summary docnum swishtitle
PropertyNames summary
PropertyNamesNumeric docnum

expect path like "/file/path 123"
#act like the 123 was in <docnum> tags
ExtractPath docnum regex \
 '!^.*([0-9]+)$!$1!'
remove the " 123" for indexing
ReplaceRules regex \
 '!^(.*) [0-9]+$!$1!'

Note that although our example above uses backslashes
to denote continued lines in our configuration file,
swish-e does not support this feature, so make sure to
enter each directive on its own line when writing
configuration files.

The swish-e executable can be used as shown below
to create an index from example3.conf and
example3-prog.pl:

swish-e -f example3.index \
 -c example3.conf \
 -i ./example3-prog.pl \
 -S prog

Here, -f sets the path of the index to be created, -c
specifies the configuration file to use during the
indexing process, and -i sets the program to be used to
convert documents for swish–e. Lastly, the -S prog
option denotes that the -i option specifies a program to
be executed describing the documents to be indexed. If
you forget the -S prog option, swish-e will index the
file example3-prog.pl itself, and not the documents
it describes when executed.

2.6.1 ExtractPath and ReplacePath

Using ExtractPath and ReplacePath can be useful
for adding meta data to documents to be indexed. In
this case, the ExtractPath directive serves to let the
integer appended to the document path be indexed as
though it had appeared inside the document in
<docnum> tags. The ReplaceRules directive then
removes the appended integer from the pathname so
that it won’t appear in the swishdocpath when
retrieved from a swish-e index.

2.7 Searching

There are two main approaches to searching on a
swish–e index: using the swish–e executable directly,
or using one of the APIs to do so.

2.7.1 The SWISH-E Query Language

Swish-e supports logical grouping via parenthesis as
well as AND, OR and NOT Boolean logic that behave
predictably.

2.7.2 Searching With SWISH-E

Searching directly with swish-e is straightforward but
not as flexible as the API. It is nevertheless very
valuable for quick tests against indices to see that they
work as expected.

For example, we can conduct searches on our
example3.index like so:

swish-e -f example3.index -w restart

which returns results like (abridged and reformatted):

1000 manual/stopping.XML
 "stopping.XML" 10577
608 manual/platform/windows.XML
 "windows.XML" 30773
608 manual/programs/apachectl.XML
 "apachectl.XML" 5818
544 manual/mod/mpm_common.XML
 "mpm_common.XML" 39171

By default, each result contains a rank, the pathname of
the indexed file, the title, and the byte count of the
indexed data.

2.7.3 Using SWISH::API.pm

Here at SkateboardDirectory.com, one of the features
that attracted us to swish-e was its perl interface,
provided through the included SWISH::API. Most of
the important features available for searching through
the swish-e executable are also accessible through the
perl API. Here’s a short example that can perform
searches similar to the one shown above:

#!/usr/bin/perl -w
#search4.pl
use SWISH::API;
my ($max, $cnt) = (10,0);
my $index = "./example3.index";
my $query = join(" ", @ARGV);
my $handle = SWISH::API->new($index);
my $results = $handle->Query($query);
while (($cnt++ < $max) &&
(my $res = $results->NextResult)) {
 printf "%d '%s' %d\n",
 $res->Property("swishrank"),
 $res->Property("swishdocpath"),
 $res->Property("swishdocsize");
}

Of course, in a real-world application you should
probably use strict and perform error checking.

2.7.4 The SWISH-E C API

There is also a C API for querying swish-e indices. It is
similar to the perl API, but allows access to more of the
low-level details in a swish-e index. For examples on
use of the swish-e C API, see the swish-e
documentation.

2.8 Other Notable SWISH-E Features

Some other features that warrant explanation are
described in this section.

2.8.1 Merging indices

Swish-e has the ability to search on multiple swish-e
indices simultaneously and merge the results
meaningfully. This enables searching on groups of
indices that may be collectively larger than the current
per-index limit of about 2GB.

2.8.2 PHP Interface

Many people have expressed interest in a PHP interface
to swish-e, and one is in development.[6]

2.9 SWISH-E Ranking

The ranking algorithm used in swish–e does not bear
easy explanation, but does take into account factors
including the size of the documents, the frequency of
each word in the document, and which tags the given
text resides in. Maintainer Moseley has repeatedly
expressed his desire for someone to clean up the
ranking code used in swish-e.

3 Real-World Examples

Here we examine two real-world uses of swish-e: sman,
the Searcher for Man Pages; and swished, a concurrent,
persistent swish-e deamon based on mod_perl.

3.1 Sman – Searcher For Man Pages

Sman is Searcher for Man Pages (written by the
Author) which uses swish–e to offer ranked, fulltext
searches on your system’s manpages. The Sman
package, which is currently available at
http://joshr.com/src/sman, is likely to appear on CPAN,

Like most well-designed software, no single part of the
sman package is particularly complex. However, due to
the wide range of differences in the ways man pages are
written, displayed and presented in various software
packages and operating systems, there are relatively
large amount of moving parts in sman.

As a high-level overview, sman consists of two
programs: sman and sman-update. Sman performs the
searches on the index of man pages, and sman-update
updates that index. Sman is broken into a series of perl

modules. By far most of the complexity is employed in
sman-update.

Sman-update, which is intended to be run nightly,
does everything necessary to parse your manpages and
create a swish-e index which allows freetext searching
on the compete text of all the manpages, as well as the
ability to search on man pages by text in their
command, section, pathname, or description. In a little
more detail, sman-update:

• reads a configuration file (by default
/usr/local/etc/sman-default.conf) which
specifies options including where to store the
final index, (by default
/var/lib/sman/sman.index)

• finds your manpages

• figures out how to best convert your man
pages to ASCII

• creates a temporary swish-e configuration file
for use while indexing the man pages

• converts each manpage and parses the result to
ascertain the title, description, section, and
complete text.

• outputs XML to swish-e to parse, using the
temporary configuration file

Sman, the tool that actually performs searches on the
index, is essentially a highly enhanced version of
search4.pl, shown above. We’ve skipped the details
of the object-oriented design used. For more details,
see the Sman source code and documentation.[7]

3.2 swished – A SWISH-E Daemon

For some time, one of the items on the swish-e to-do
list has been for someone to write a persistent,
concurrent server for swish-e indices. Here we present
the overall design of such a daemon, written as an
apache mod_perl handler.

There are at least three reasons that apache makes sense
as an infrastructure for this purpose.

• http is a well defined protocol

• apache is stable, proven, widely deployable
software that provides sophisticated logging,
authentication, and extension mechanisms

• Perl, SWISH::API and mod_perl make it fairly
easy

The plan is to provide a SWISH::API::Remote perl
module that will access a swished daemon using an
interface very similar to SWISH::API, but which is
designed to communicate with swished over TCP/IP
instead of directly reading the swish-e index.

4 SWISH-E vs MySQL

Just how fast is swish-e? Here we put swish-e and
MySQL’s fulltext search feature through the paces with
some benchmarks against indices of different sizes and
compare the results.

4.1 Differences and Similarities

While targeted at essentially the same problem of
facilitating quick searches on larger amounts of textual
data, the indexing models employed by MySQL’s Full
Text search and swish-e have significant differences.
Some of these are outlined below.

Table 2: Some Pros and Cons of swish-e and MySQL

Engine Pros Cons
Swish-e • more compact

indices
• indexes all
words over 1
character

• not multibyte
• no updates to
indices*
• only for indexing

MySQL • updatable
indices*
• deep multibyte
support
• also a storage
engine

• less compact
indices
• indexes only words
over 3 characters**
• ignores words
appearing in over
50% of rows in a
fulltext index***

 * In swish-e, indexes must be rewritten to be modified.
MySQL indices can be updated through normal sql
queries.
** By default, MySQL will only index words four
charaters or longer. This can be changed via MySQL’s
ft_min_word_len configuration option.
*** MySQL fulltext search does consider such words if
searches are conducted in boolean mode, but then the
results aren’t ranked.

4.2 Benchmark Methodology

To compare swish-e with MySQL, a series of textual
collections were created, varying in size from 1MB to
5GB. Each corpus was made of English words
randomly chosen but based on the statistical

frequencies of common English words. The following
table summarizes the seven collections used in the
benchmarks:

Table 3: breakdown of collections used for testing.

Approx
Collection
Size

Num
Words/
Doc

Num
Docs

Approx
size of
swish-e
index

Approx
size of
MySQL
index

1MB 15 8.3K 2.6MB 2.3MB
3MB 15 25K 5.9MB 6.8MB
10MB 54 25K 14MB 21MB
50MB 54 100K 56MB 109MB
250MB 273 100K 245MB 554MB
1GB 273 500K 970MB 2.0GB
5GB 1366 500K 4.6GB* 9.0GB

 *The swish-e index for the 5GB collection was built in
two equal-sized parts, as swish-e cannot yet support
index files over about 2.1GB. The two indices used in
the 5GB collection were searched simultaneously using
swish-e’s merge search feature.

Tests were performed on a 3.06Ghz Hyper-Threading
Pentium 4 with 2GB of RAM and an 80GB HD. The
system was running a linux 2.6.5 kernel with SMP
enabled. Swish-e version 2.5.1-2004-04-28 and MySQL
4.1.1 were used.

For MySQL, the provided my-huge.cnf configuration
file was used, with the following modifications:
ft_min_word_len was set to three instead of four,
thus indexing words three or more letters (and not only
words four letters or longer), and thread_concurrency
was set to 4. Additionally, for the 1GB and 5GB
indices, the MySQL configuration option MAX_ROWS
was set to 10000000 and AVG_ROW_LENGTH was
set to 13000 so as to allow enough data to be stored in
each table.

The searches were performed with two groups of 200
searches made up of randomly selected words from the
collections three characters or longer. In each group of
200 searches, 53 were 1-word searches, 115 were 2-
word searches, 25 were 3-word searches, 4 were 4-word
searches, 2 were 5-word searches, and 1 was a six-word
search. (This approximates the distribution of numbers
of words in the most popular searches on
SkateboardDirectory.com.) All swish-e searches were
conducted with the words ANDed, and MySQL
searches were conducted with the + prefix, which has
the effect of requiring relevant documents to contain all
words in the query. Each index was tested by searching

twice with two sets of 200 queries, retrieving the
pathname and complete content of the first 20
documents found relevant, and computing the average
response time. The MySQL server was not running
when swish-e was being benchmarked, and the machine
was rebooted between each test run.

4.3 Benchmark Results

Graph 1: MySQL against swish-e, showing
average search time vs. collection size.

(The average search time for searches on the 5GB
MySQL collection was 14 seconds, way off the graph
above.)

As the graph above indicates, both engines are very
fast, but swish-e is faster, especially for large indices.
When searching on the 5GB collection using MySQL,
it appears that performance suffers as the machine
begins to thrash, as the index can no longer fit in
memory and/or MySQL’s caches. Adjusting MySQL’s
configuration may help narrow this gap but it appears
that for now, swish-e is faster for raw searches. There is
also likely more speed to be squeezed out of swish-e.

5 Research Ideas

As alluded to before in section 2.9, maintainer Moseley
thinks that work on the ranking algorithm in swish-e is
worthy of a graduate level thesis in computer science.
Considering that Google is based on a 1998 Stanford
hypertext retrieval project focused on ranking web
pages[8], this is probably an understatement.

6 Limitations and Weaknesses

For all its strengths, swish-e has some weaknesses.

6.1 Size limits

There are various hard-coded and system-oriented size
limits in swish-e, including limits on the maximum
lengths of words, Properties, and indices as a whole.

6.2 Character Sets And Conversion Issues

Also, swish-e is admittedly an 8bit indexing system,
and has no multibyte nor UTF support. Indices must
be built and queried for a particular character set.

6.3 Occasionally Quirky Search Results

The ranking algorithm of swish-e occasionally leads to
surprising, even erroneous search results, typically by
failing to rank highly documents that one would expect
to be relevant.

7 Future Plans for SWISH-E

These are some features the developers of swish-e feel
are important.

7.1 UTF-8 support

This would enable a single index to hold data in
languages that require multibyte characters, and would
make swish-e indexes fully 8bit aware. According to
Moseley, adding support for UTF-8, which he believes
to be the best course of action, would require a near
total rewrite of swish-e because of many assumptions
that the size of one character is one byte.

7.2 Remove Two Gigabyte Limits

The files used in a swish-e index are currently limited
to about 2GB in size, even on systems which support
larger files. Support for indices larger than 2GB is in
development.

7.3 Ranking Improvements

Mentioned above, there is room for improvement in the
ranking algorithms.

8.0 Acknowledgements

Thanks to Kevin Hughes, Bill Moseley, Jóse Manuel
Ruiz, David Norris, Roy Tennant, and Adam Souzis for
their input and feedback on this paper. In addition,
thanks to the entire current and past swish, swish-e, and
MySQL development teams for great open source
software products.

9.0 Conclusion

It is clear that swish-e is a powerful and fast engine
with which to create and search on indices. The
underlying speed of swish-e, coupled with its quality
documentation, lively discussion list, perl, C, and PHP
interfaces, provide a robust and flexible foundation
upon which to build searching systems.

References

[1] Hughes, K., Moseley, B. et. Al.: SWISH-E.
www.swish-e.org, 2004.

[2] MySQL AB: MySQL. www.mysql.com, 2004.

[3] Rabinowitz, J.: How To Index Anything; Linux
Journal, July 2003, also at
www.linuxjournal.com/article.php?
sid=6652

[4] Sleepycat Software: Berkeley DB.
www.sleepycat.com, 2004.

[5] Glyph & Cog, Xpdf; www.foolabs.com/xpdf/

[6] Ruiz, J. M., php-swishe;
http://prdownloads.sourceforge.net/php-
swishe/

[7] Rabinowitz, J.: Sman: The Searcher for Man Pages;
www.joshr.com/src/sman/

[8] Page, L., Brin, S., Motwani, R., Winograd, T.: The
PageRank Citation Ranking: Bringing Order to the
Web; Stanford Digital Libraries Project, 1998.

